• About Us
  • Contact Us
  • Terms & Conditions
  • Privacy Policy
Technology Hive
  • Home
  • Technology
  • Artificial Intelligence (AI)
  • Cyber Security
  • Machine Learning
  • More
    • Deep Learning
    • AI in Healthcare
    • AI Regulations & Policies
    • Business
    • Cloud Computing
    • Ethics & Society
No Result
View All Result
  • Home
  • Technology
  • Artificial Intelligence (AI)
  • Cyber Security
  • Machine Learning
  • More
    • Deep Learning
    • AI in Healthcare
    • AI Regulations & Policies
    • Business
    • Cloud Computing
    • Ethics & Society
No Result
View All Result
Technology Hive
No Result
View All Result
Home Artificial Intelligence (AI)

Predicting Rare Kinds of Failures

Adam Smith – Tech Writer & Blogger by Adam Smith – Tech Writer & Blogger
May 27, 2025
in Artificial Intelligence (AI)
0
Predicting Rare Kinds of Failures
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

Introduction to System Failures

On Dec. 21, 2022, just as peak holiday season travel was getting underway, Southwest Airlines went through a cascading series of failures in their scheduling, initially triggered by severe winter weather in the Denver area. But the problems spread through their network, and over the course of the next 10 days the crisis ended up stranding over 2 million passengers and causing losses of $750 million for the airline.

Understanding the Failure

How did a localized weather system end up triggering such a widespread failure? Researchers at MIT have examined this widely reported failure as an example of cases where systems that work smoothly most of the time suddenly break down and cause a domino effect of failures. They have now developed a computational system for using the combination of sparse data about a rare failure event, in combination with much more extensive data on normal operations, to work backwards and try to pinpoint the root causes of the failure, and hopefully be able to find ways to adjust the systems to prevent such failures in the future.

The Research Findings

The findings were presented at the International Conference on Learning Representations (ICLR), which was held in Singapore from April 24-28 by MIT doctoral student Charles Dawson, professor of aeronautics and astronautics Chuchu Fan, and colleagues from Harvard University and the University of Michigan. “The motivation behind this work is that it’s really frustrating when we have to interact with these complicated systems, where it’s really hard to understand what’s going on behind the scenes that’s creating these issues or failures that we’re observing,” says Dawson.

The Goal of the Project

The new work builds on previous research from Fan’s lab, where they looked at problems involving hypothetical failure prediction problems, she says, such as with groups of robots working together on a task, or complex systems such as the power grid, looking for ways to predict how such systems may fail. “The goal of this project,” Fan says, “was really to turn that into a diagnostic tool that we could use on real-world systems.” The idea was to provide a way that someone could “give us data from a time when this real-world system had an issue or a failure,” Dawson says, “and we can try to diagnose the root causes, and provide a little bit of a look behind the curtain at this complexity.”

Cyber-Physical Problems

The intent is for the methods they developed “to work for a pretty general class of cyber-physical problems,” he says. These are problems in which “you have an automated decision-making component interacting with the messiness of the real world,” he explains. There are available tools for testing software systems that operate on their own, but the complexity arises when that software has to interact with physical entities going about their activities in a real physical setting, whether it be the scheduling of aircraft, the movements of autonomous vehicles, the interactions of a team of robots, or the control of the inputs and outputs on an electric grid.

Analyzing the Failure

One key difference, though, is that in systems like teams of robots, unlike the scheduling of airplanes, “we have access to a model in the robotics world,” says Fan, who is a principal investigator in MIT’s Laboratory for Information and Decision Systems (LIDS). “We do have some good understanding of the physics behind the robotics, and we do have ways of creating a model” that represents their activities with reasonable accuracy. But airline scheduling involves processes and systems that are proprietary business information, and so the researchers had to find ways to infer what was behind the decisions, using only the relatively sparse publicly available information, which essentially consisted of just the actual arrival and departure times of each plane.

The Role of Reserve Aircraft

The impact of the weather events in Denver during the week of Southwest’s scheduling crisis clearly showed up in the flight data, just from the longer-than-normal turnaround times between landing and takeoff at the Denver airport. But the way that impact cascaded though the system was less obvious, and required more analysis. The key turned out to have to do with the concept of reserve aircraft. Airlines typically keep some planes in reserve at various airports, so that if problems are found with one plane that is scheduled for a flight, another plane can be quickly substituted.

Conclusion

The research team has developed a method to analyze failure systems, which could lead to a real-time monitoring system, where data on normal operations are constantly compared to the current data, and determining what the trend looks like. This could allow for preemptive measures, such as redeploying reserve aircraft in advance to areas of anticipated problems. Work on developing such systems is ongoing in her lab, Fan says. In the meantime, they have produced an open-source tool for analyzing failure systems, called CalNF, which is available for anyone to use.

FAQs

Q: What triggered the Southwest Airlines scheduling crisis?
A: The crisis was initially triggered by severe winter weather in the Denver area.
Q: How many passengers were affected by the crisis?
A: Over 2 million passengers were stranded due to the crisis.
Q: What is the goal of the project developed by the MIT researchers?
A: The goal is to develop a diagnostic tool that can be used to diagnose the root causes of failures in complex systems.
Q: What type of problems do the methods developed by the researchers aim to solve?
A: The methods aim to solve cyber-physical problems, which involve automated decision-making components interacting with the physical world.
Q: What is the name of the open-source tool developed by the researchers?
A: The tool is called CalNF.

Previous Post

After Mr. Deepfakes shut down forever, one creator could face a $450K fine

Next Post

Hidden AI instructions reveal how Anthropic controls Claude 4

Adam Smith – Tech Writer & Blogger

Adam Smith – Tech Writer & Blogger

Adam Smith is a passionate technology writer with a keen interest in emerging trends, gadgets, and software innovations. With over five years of experience in tech journalism, he has contributed insightful articles to leading tech blogs and online publications. His expertise covers a wide range of topics, including artificial intelligence, cybersecurity, mobile technology, and the latest advancements in consumer electronics. Adam excels in breaking down complex technical concepts into engaging and easy-to-understand content for a diverse audience. Beyond writing, he enjoys testing new gadgets, reviewing software, and staying up to date with the ever-evolving tech industry. His goal is to inform and inspire readers with in-depth analysis and practical insights into the digital world.

Related Posts

AI-Powered Next-Gen Services in Regulated Industries
Artificial Intelligence (AI)

AI-Powered Next-Gen Services in Regulated Industries

by Adam Smith – Tech Writer & Blogger
June 13, 2025
NVIDIA Boosts Germany’s AI Manufacturing Lead in Europe
Artificial Intelligence (AI)

NVIDIA Boosts Germany’s AI Manufacturing Lead in Europe

by Adam Smith – Tech Writer & Blogger
June 13, 2025
The AI Agent Problem
Artificial Intelligence (AI)

The AI Agent Problem

by Adam Smith – Tech Writer & Blogger
June 12, 2025
The AI Execution Gap
Artificial Intelligence (AI)

The AI Execution Gap

by Adam Smith – Tech Writer & Blogger
June 12, 2025
Restore a damaged painting in hours with AI-generated mask
Artificial Intelligence (AI)

Restore a damaged painting in hours with AI-generated mask

by Adam Smith – Tech Writer & Blogger
June 11, 2025
Next Post
Hidden AI instructions reveal how Anthropic controls Claude 4

Hidden AI instructions reveal how Anthropic controls Claude 4

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Latest Articles

Why wait? Google is already dismantling Assistant as it switches to Gemini

Why wait? Google is already dismantling Assistant as it switches to Gemini

March 17, 2025
OpenAI’s Naming Chaos Persists

OpenAI’s Naming Chaos Persists

April 15, 2025
Human Oversight in AI-Driven Workflows

Human Oversight in AI-Driven Workflows

May 25, 2025

Browse by Category

  • AI in Healthcare
  • AI Regulations & Policies
  • Artificial Intelligence (AI)
  • Business
  • Cloud Computing
  • Cyber Security
  • Deep Learning
  • Ethics & Society
  • Machine Learning
  • Technology
Technology Hive

Welcome to Technology Hive, your go-to source for the latest insights, trends, and innovations in technology and artificial intelligence. We are a dynamic digital magazine dedicated to exploring the ever-evolving landscape of AI, emerging technologies, and their impact on industries and everyday life.

Categories

  • AI in Healthcare
  • AI Regulations & Policies
  • Artificial Intelligence (AI)
  • Business
  • Cloud Computing
  • Cyber Security
  • Deep Learning
  • Ethics & Society
  • Machine Learning
  • Technology

Recent Posts

  • Best Practices for AI in Bid Proposals
  • Artificial Intelligence for Small Businesses
  • Google Generates Fake AI Podcast From Search Results
  • Technologies Shaping a Nursing Career
  • AI-Powered Next-Gen Services in Regulated Industries

Our Newsletter

Subscribe Us To Receive Our Latest News Directly In Your Inbox!

We don’t spam! Read our privacy policy for more info.

Check your inbox or spam folder to confirm your subscription.

© Copyright 2025. All Right Reserved By Technology Hive.

No Result
View All Result
  • Home
  • Technology
  • Artificial Intelligence (AI)
  • Cyber Security
  • Machine Learning
  • AI in Healthcare
  • AI Regulations & Policies
  • Business
  • Cloud Computing
  • Ethics & Society
  • Deep Learning

© Copyright 2025. All Right Reserved By Technology Hive.

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?